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In the present paper, we are going to introduce and at the same time 
investigate the notion of slowly oscillating sequences, study on slowly 
oscillating compactness and slowly oscillating continuous functions in locally 
normal Riesz space. For this purpose, first of all, we are going to try to put 
forward some fundamental theorems about oscillating continuity, slowly 
oscillating compactness, sequential continuity and uniform continuity. 
Secondly, the newly obtained results in this paper can also be obtained with 
the definition of quasi-slowly oscillating and Δ-quasi-slowly oscillating 
sequences in terms of fuzzy points. Finally, most of the related theorems and 
lemmas are presented clearly. 
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1. Introduction 

*A Riesz space is an ordered vector space which 
is a lattice at the same time. It was first introduced 
by Riesz (1928). Riesz spaces have many 
applications in measure theory, operator theory and 
optimization. They have also some applications in 
economics (Aliprantis and Burkinshaw, 2003) and 
we refer to Albayrak and Pehlivan (2012), Alotaibi et 
al. (2014a, 2014b), Luxemburg and Zaanen (1971), 
Mohiuddine et al. (2012, 2013), Roberts (1952), 
Zannen (1997) for more details. 

A real valued function is continuous on the set of 
real numbers if and only if it preserves Cauchy 
sequences. Using the idea of continuity of a real 
function and the idea of compactness in terms of 
sequences, many kinds of continuities were 
introduced and investigated, not all but some of 
them we recall in the following: forward continuity 
(Cakalli, 2011a), slowly oscillating continuity 
(Cakalli, 2008; Dik and Canak, 2010; Hazarika, 2016; 
Tripathy and Baruah, 2010; Vallin, 2011), ideal ward 
continuity (Hazarika, 2014b; Hazarika and Esi, 
2016a), 𝜙-statistical ward continuity (Hazarika and 
Esi, 2016a), 𝜙-ideal ward continuity (Hazarika and 
Esi, 2016b). The concept of a Cauchy sequence 
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involves far more than that the distance between 
successive terms is tending to zero. Nevertheless, 
sequences which satisfy this weaker property are 
interesting in their own right. A sequence (𝑥𝑛) of 
points in ℝ is called quasi-Cauchy if (Δ𝑥𝑛) is a null 
sequence where Δ𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 . Burton and 
Coleman (2010) named these sequences as "quasi-
Cauchy" and Cakalli (2011b) used the term "ward 
convergent to 0" sequences. In terms of quasi-
Cauchy we restate the definitions of ward 
compactness and ward continuity as follows: a 
function 𝑓 is ward continuous if it preserves quasi-
Cauchy sequences, i.e. (𝑓(𝑥𝑛)) is quasi-Cauchy 
whenever (𝑥𝑛) is, and a subset 𝐸 of ℝ is ward 
compact if any sequence x = (𝑥𝑛) of points in 𝐸 has a 
quasi-Cauchy subsequence z = (𝑧𝑘) = (𝑥𝑛𝑘

) of the 

sequence x. 

2. Preliminaries and notations 

It is known that a sequence (𝑥𝑛) of points in ℝ, 
the set of real numbers, is slowly oscillating if  

 
lim

𝜆→1+
lim𝑛 max

𝑛+1≤𝑘≤[𝜆𝑛]
|𝑥𝑘 − 𝑥𝑛| = 0  

 
where, [𝜆𝑛] denotes the integer part of 𝜆𝑛. This is 
equivalent to the following if (𝑥𝑚 − 𝑥𝑛) → 0 

whenever 1 ≤
𝑚

𝑛
→ 1 as 𝑚, 𝑛 → ∞. Using 𝜀 > 0 and 𝛿 

this is also equivalent to the case when for any given 
𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) > 0 and 𝑁 = 𝑁(𝜀) such 
that |𝑥𝑚 − 𝑥𝑛| < 𝜀 if 𝑛 ≥ 𝑁(𝜀) and 𝑛 ≤ 𝑚 ≤ (1 + 𝛿)𝑛 
(Cakalli, 2008). 
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A function defined on a subset 𝐸 of ℝ is called 
slowly oscillating continuous if it preserves slowly 
oscillating sequences, i.e. (𝑓(𝑥𝑛)) is slowly oscillating 
whenever (𝑥𝑛) is. 

Connor and Grosse-Erdmann (2003) gave 
sequential definitions of continuity for real functions 
calling 𝐺-continuity instead of 𝐴-continuity and their 
results covers the earlier works related to 𝐴-
continuity where a method of sequential 
convergence, or briefly a method, is a linear function 
𝐺 defined on a linear subspace of 𝑠, space of all 
sequences, denoted by 𝑐𝐺 , into ℝ. A sequence x =
(𝑥𝑛) is said to be 𝐺-convergent to ℓ if x ∈ 𝑐𝐺  and 
𝐺(x) = ℓ. In particular, lim denotes the limit function 
limx = lim𝑛𝑥𝑛 on the linear space 𝑐.  

A method 𝐺 is called regular if every convergent 
sequence x = (𝑥𝑛) is 𝐺-convergent with 𝐺(x) = limx. 
A method is called subsequential if whenever x is 𝐺-
convergent with 𝐺(x) = ℓ, then there is a 
subsequence (𝑥𝑛𝑘

) of x with lim𝑘𝑥𝑛𝑘
= ℓ (Cakalli, 

2011c). 
Let 𝑋 be a real vector space and ≤ be a partial 

order on this space. Then 𝑋 is said to be an ordered 
vector space if it satisfies the following properties: 

 
(i) if 𝑥, 𝑦 ∈ 𝑋 and 𝑦 ≤ 𝑥, then 𝑦 + 𝑧 ≤ 𝑥 + 𝑧 for each 

𝑧 ∈ 𝑋. 
(ii) if 𝑥, 𝑦 ∈ 𝑋 and 𝑦 ≤ 𝑥, then 𝑎𝑦 ≤ 𝑎𝑥 for each 𝑎 ≥

0. 
 
If, in addition, 𝑋 is a lattice with respect to the 

partial ordered, then 𝑋 is said to be a Riesz space (or 
a vector lattice) (Zannen, 1997). 

For an element 𝑥 of a Riesz space 𝑋, the positive 

part of 𝑥 is defined by 𝑥+ = 𝑥 ∨ 0 = sup{𝑥, 0}, the 

negative part of 𝑥 by 𝑥− = −𝑥 ∨ 0 and the absolute 

value of 𝑥 by |𝑥| = 𝑥 ∨ (−𝑥), where 0 is the zero 
element of 𝑋. 

A subset 𝑆 of a Riesz space 𝑋 is said to be normal 
if 𝑦 ∈ 𝑆 and |𝑥| ≤ |𝑦| implies 𝑥 ∈ 𝑆. 

A topological vector space (𝑋, 𝜏) is a vector space 
𝑋 which has a topology (linear) 𝜏, such that the 
algebraic operations of addition and scalar 
multiplication in 𝑋 are continuous. Continuity of 
addition means that the function 𝑓: 𝑋 × 𝑋 → 𝑋 
defined by 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 is continuous on 𝑋 × 𝑋, 
and continuity of scalar multiplication means that 
the function 𝑓: ℝ × 𝑋 → 𝑋 defined by 𝑓(𝑎, 𝑥) = 𝑎𝑥 is 
continuous on ℝ × 𝑋. 

Every linear topology 𝜏 on a vector space 𝑋 has a 

base 𝑁 for the neighborhoods of 𝜃 satisfying the 
following properties: 

 
(1) Each 𝑌 ∈ 𝑁 is a balanced set, that is, 𝑎𝑥 ∈ 𝑌 holds 

for all 𝑥 ∈ 𝑌 and for every 𝑎 ∈ ℝ with |𝑎| ≤ 1. 
(2) Each 𝑌 ∈ 𝑁 is an absorbing set, that is, for every 

𝑥 ∈ 𝑋, there exists 𝑎 > 0 such that 𝑎𝑥 ∈ 𝑌. 
(3) For each 𝑌 ∈ 𝑁 there exists some 𝐸 ∈ 𝑁 with 𝐸 +

𝐸 ⊆ 𝑌. 
 
A linear topology 𝜏 on a Riesz space 𝑋 is said to 

be locally normal if 𝜏 has a base at zero consisting of 

solid sets. A locally normal Riesz space (𝑋, 𝜏) is a 
Riesz space equipped with a locally normal topology 
𝜏. 

Recall that a first countable space is a topological 
space satisfying the "first axiom of countability". 
Specifically, a space 𝑋 is said to be first countable if 
each point has a countable neighborhood basis (local 
base). That is, for each point 𝑥 in 𝑋 there exists a 
sequence 𝑉1, 𝑉2, ⋯ of open neighborhoods of 𝑥 such 
that for any open neighborhood 𝑉 of 𝑥 there exists 
an integer 𝑗 with 𝑉𝑗  contained in 𝑉. 

Throughout the article, the symbol 𝑁𝑛𝑜𝑟  we will 
denote any base at zero consisting of normal sets 
and satisfying the conditions (1), (2) and (3) in a 
locally normal topology. Also (𝑋, 𝜏) a locally normal 
Riesz space (in short LNRS) and ℕ and ℝ will denote 
the set of all positive integers, and the set of all real 
numbers, respectively. We will use boldface letters x, 
y, z, ... for sequences x = (𝑥𝑛), y = (𝑦𝑛), z = (𝑧𝑛), ... of 
points in 𝑋. 

3. Slowly oscillating sequences in LNRS 

In this section we introduce the concepts of 
slowly oscillating continuity and slowly oscillating 
compactness in LNRS and establish some interesting 
results related to these notions. 

A sequence x = (𝑥𝑛) of points in 𝑋 is called quasi-
Cauchy if for each 𝜏-neighborhood 𝑉 of zero, there 
exists an 𝑚0 ∈ ℕ such that 𝑥𝑛+1 − 𝑥𝑛 ∈ 𝑉 for ≥ 𝑚0. It 
is clear that Cauchy sequences are slowly oscillating 
not only the real case but also in the LNRS setting. It 
is easy to see that any slowly oscillating sequence of 
points in 𝑋 is quasi-Cauchy and therefore Cauchy 
sequence is quasi-Cauchy. The converses are not 
always true. There are quasi-Cauchy sequences 
which are not Cauchy. There are quasi-Cauchy 
sequences which are not slowly oscillating. Any 
subsequence of Cauchy sequence is Cauchy. The 
analogous property fails for quasi-Cauchy sequences 
and slowly oscillating sequences as well. 

Now we introduce the notion of slowly oscillating 
sequences and slowly oscillating continuity in LNRS. 

Definition 3.1: A sequence 𝑥 = (𝑥𝑛) of points in 𝑋 is 
said to be slowly oscillating if for each 𝜏-neighborhood 
𝑉 of zero, there exist 𝛿 = 𝛿(𝑉) > 0 and 𝑚 = 𝑚(𝑉) 
such that  

 
𝑥𝑘 − 𝑥𝑛 ∈ 𝑉 𝑓𝑜𝑟 𝑛 ≥ 𝑚(𝑉)𝑎𝑛𝑑 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. 

 
It is clear that a convergent sequence is slowly 

oscillating, since every convergent sequence is a 
Cauchy sequence, and any slowly oscillating 
sequence is quasi-Cauchy, but the converse need not 

to be true in general. For examples, (∑∞
𝑛=1

1

𝑛
), 

(ln𝑛), (lnln𝑛) are slowly oscillating, but not Cauchy. 

The sequence (∑𝑛
𝑘=1

1

𝑘
) is quasi-Cauchy, but not 

slowly oscillating. 
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Definition 3.2: A function 𝑓 defined on a subset 𝐸 of 
𝑋 is called slowly oscillating continuous if it 
transforms slowly oscillating sequences to slowly 
oscillating sequences of points in 𝐸, that is, (𝑓(𝑥𝑛)) is 
slowly oscillating whenever (𝑥𝑛) is slowly oscillating 
sequences of points in 𝐸.  

Theorem 3.3: If 𝑓 is slowly oscillating continuous on 
a subset 𝐸 of 𝑋 then it is continuous on 𝐸 in the 
ordinary sense.  

Proof. Suppose that 𝑓 is slowly oscillating 
continuous on 𝐸 and let (𝑥𝑛) be any convergent 
sequence of points in 𝐸 with lim𝑛→∞𝑥𝑛 = 𝑥0. Then 
the sequence  

 
(𝑦𝑛) = (𝑥1, 𝑥0, 𝑥2, 𝑥0, . . . , 𝑥𝑛−1, 𝑥0, 𝑥𝑛 , 𝑥0, . . . ) 
 
is also convergent to 𝑥0 and hence (𝑦𝑛) is slowly 
oscillating. Since 𝑓 is slowly oscillating continuous, 
the sequence  
 
(𝑓(𝑦𝑛)) = (𝑓(𝑥1), 𝑓(𝑥0), 𝑓(𝑥2), 𝑓(𝑥0), … , 𝑓(𝑥𝑛−1), 𝑓(𝑥0), 

𝑓(𝑥𝑛), 𝑓(𝑥0), . . . ) 
 
is also slowly oscillating. Hence (𝑓(𝑦𝑛)) is a quasi-
Cauchy sequence. Now it follows that if for each 𝜏-
neighborhood 𝑉 of zero, there exists 𝑚 = 𝑚(𝑉) such 
that  
 
𝑓(𝑥𝑛) − 𝑓(𝑥0) ∈ 𝑉 𝑓𝑜𝑟 𝑛 ≥ 𝑚  

 
this completes the proof of theorem.  

Theorem 3.4: If 𝑓 and 𝑔 are slowly oscillating 
continuous functions on a subset 𝐸 of 𝑋. Then 𝑓 + 𝑔 is 
slowly oscillating continuous in 𝐸.  

Proof. Let 𝑓 and 𝑔 be slowly oscillating continuous 
functions on a subset 𝐸 of 𝑋. To prove that 𝑓 + 𝑔 is 
slowly oscillating continuous on 𝐸. Let 𝐱 = (𝑥𝑛) is 
any slowly oscillating sequence in 𝐸. Then (𝑓(𝑥𝑛)) 
and (𝑔(𝑥𝑛)) are slowly oscillating sequences. Since 
(𝑓(𝑥𝑛)) and (𝑔(𝑥𝑛)) are slowly oscillating 
sequences, if for each 𝜏-neighborhood 𝑉 of zero, 
there exists a 𝑌 ∈ 𝑁𝑛𝑜𝑟  such that 𝑌 ⊆ 𝑉. Choose 𝑊 ∈
𝑁𝑛𝑜𝑟  such that 𝑊 + 𝑊 ⊆ 𝑌, there exists 𝛿 > 0 and a 
positive integer 𝑛1 such that  

 
𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) ∈ 𝑊 𝑎𝑛𝑑 𝑔(𝑥𝑘) − 𝑔(𝑥𝑛) ∈ 𝑊 
 
for all 𝑛 ≥ 𝑛1 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. Therefore, if 
𝑛 ≥ 𝑛1 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛, we have  
 
(𝑓 + 𝑔)(𝑥𝑘) − (𝑓 + 𝑔)(𝑥𝑛)

= 𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) + 𝑔(𝑥𝑘) − 𝑔(𝑥𝑛)
∈ 𝑊 + 𝑊 ⊆ 𝑌 ⊆ 𝑉. 

 
This implies that (𝑓 + 𝑔)(𝑥𝑘) − (𝑓 + 𝑔)(𝑥𝑛) ∈ 𝑉 

for all 𝑛 ≥ 𝑛1 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. This complets 
the proof of the theorem.  

In Vallin (2011), it was proved that a slowly 
oscillating continuous function is uniformly 

continuous on ℝ. We see that is also the case that 
any slowly oscillating continuous function on a 
connected subset of 𝑋 is uniformly continuous. 

Theorem 3.5: If f is a uniformly continuous function 
defined on a subset 𝐸 of 𝑋, then it is slowly oscillating 
continuous on 𝐸.  

Proof. Let 𝑓 be uniformly continuous function and 
𝐱 = (𝑥𝑛) be any slowly oscillating sequence in 𝐸. Let 
𝑊 be a 𝜏-neighborhood of zero. Since 𝑓 is uniformly 
continuous on 𝐸, then there exists a 𝜏-neighborhood 
𝑉 of zero such that 𝑓(𝑥) − 𝑓(𝑦) ∈ 𝑊 whenever 𝑥 −
𝑦 ∈ 𝑉. Since (𝑥𝑛) is slowly oscillating, for the same 𝜏-
neighborhood 𝑊 of zero, there exist 𝑚 = 𝑚(𝑉) and 
𝛿 = 𝛿(𝑉) > 0 such that 𝑥𝑘 − 𝑥𝑛 ∈ 𝑉 for 𝑛 ≥ 𝑚(𝑉) 
and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. Hence we have 𝑓(𝑥𝑘) −
𝑓(𝑥𝑛) ∈ 𝑊 whenever 𝑛 ≥ 𝑚(𝑉) and 𝑛 ≤ 𝑘 ≤ (1 +
𝛿)𝑛. It follows that (𝑓(𝑥𝑛)) is slowly oscilatting. This 
completes the proof of theorem.  

Definition 3.6: A sequence (𝑥𝑛) of points in 𝑋 is 
called Cesáro slowly oscillating if (𝑡𝑛) is slowly 

oscillating, where 𝑡𝑛 =
1

𝑛
∑𝑛

𝑘=1 𝑥𝑘 , is the Cesáro means 

of the sequence (𝑥𝑛). Also a function 𝑓 defined on a 
subset 𝐸 of 𝑋 is called Cesáro slowly oscillating 
continuous if it preserves Cesáro slowly oscillating 
sequences of points in 𝐸. 

By using the similar argument used in proof of 
Theorem 3.5, we immediately have the following 
result. 
 

Theorem 3.7: If 𝑓 is a uniformly continuous on a 
subset 𝐸 of 𝑋 and (𝑥𝑛) is a slowly oscillating sequence 
in 𝐸, then (𝑓(𝑥𝑛)) is Cesáro slowly oscillating.  
 

Definition 3.8: A sequence of functions (𝑓𝑛) defined 
on a subset 𝐸 of 𝑋 is said to be uniformly convergent 
to a function 𝑓 if for each 𝜏-neighborhood 𝑉 of zero, 
there exists an integer 𝑛0 = 𝑛0(𝑉) such that 𝑓𝑛(𝑥) −
𝑓(𝑥) ∈ 𝑉 for all 𝑛 ≥ 𝑛0 and 𝑥 ∈ 𝐸.  

Theorem 3.9: If (𝑓𝑛) is a sequence of slowly 
oscillating continuous functions defined on a subset 𝐸 
of 𝑋 and (𝑓𝑛) is uniformly convergent to a function 𝑓 
on 𝐸, then 𝑓 is slowly oscillating continuous on 𝐸.  

Proof. Let (𝑥𝑛) be any slowly oscillating sequence of 
points in 𝐸. By uniform convergence of (𝑓𝑛), if for 
each 𝜏-neighborhood 𝑉 of zero, there exists a 𝑌 ∈
𝑁𝑛𝑜𝑟  such that 𝑌 ⊆ 𝑉. Choose 𝑊 ∈ 𝑁𝑛𝑜𝑟 such that 
𝑊 + 𝑊 + 𝑊 ⊆ 𝑌. Then there exists 𝑛1 = 𝑛1(𝑉) such 
that 
  
𝑓𝑛(𝑥) − 𝑓(𝑥) ∈ 𝑊  

 
for each 𝑥 ∈ 𝐸 and for all 𝑛 ≥ 𝑛1. Also since 𝑓𝑛1

 is 

slowly oscillating continuous, there exist 𝑛2 = 𝑛2(𝑉) 
and 𝛿 = 𝛿(𝑉) > 0 such that 
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𝑓𝑛1
(𝑥𝑘) − 𝑓𝑛1

(𝑥𝑛) ∈ 𝑊  

 
whenever 𝑛 ≥ 𝑛2 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. Let 𝑚 =
𝑚(𝑉) = max{𝑛1(𝑉), 𝑛2(𝑉)}. Therefore if 𝑛 ≥ 𝑚 and 
𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛 we have  
 
𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) = 𝑓(𝑥𝑘) − 𝑓𝑛1

(𝑥𝑘) + 𝑓𝑛1
(𝑥𝑘) − 𝑓𝑛1

(𝑥𝑛)

+ 𝑓𝑛1
(𝑥𝑛) − 𝑓(𝑥𝑛) ∈ 𝑊 + 𝑊 + 𝑊 ⊆ 𝑌

⊆ 𝑉. 

 
Thus it implies that 𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) ∈ 𝑉 if 𝑛 ≥ 𝑚 

and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. It follows that (𝑓(𝑥𝑛)) is a 
slowly oscillating sequence of points in 𝐸 which 
completes the proof of theorem.  

Using the same techniques as in the Theorem 3.9, 
the following result can be obtained easily. 

Theorem 3.10: If (𝑓𝑛) is a sequence of Cesáro slowly 
oscillating continuous functions defined on a subset 𝐸 
of 𝑋 and (𝑓𝑛) is uniformly convergent to a function 𝑓 
on 𝐸, then 𝑓 is Cesáro slowly oscillating continuous on 
𝐸.  

Theorem 3.11: The set of all slowly oscillating 
continuous functions defined on a subset 𝐸 of 𝑋 is a 
closed subset of all continuous functions on 𝐸, that is 

𝑆𝑂𝐶(𝐸) = 𝑆𝑂𝐶(𝐸), where 𝑆𝑂𝐶(𝐸) is the set of all 
slowly oscillating continuous functions defined on 𝐸 

and 𝑆𝑂𝐶(𝐸) denotes the set of all cluster points of 
𝑆𝑂𝐶(𝐸).  

Proof. Let 𝑓 be any element of 𝑆𝑂𝐶(𝐸). Then there 
exists a sequence of points in 𝑆𝑂𝐶(𝐸) such that 
lim𝑘→∞𝑓𝑘 = 𝑓. To show that 𝑓 is slowly oscillating 
sequence on 𝐸. Now let (𝑥𝑛) be any slowly oscillating 
sequence in 𝐸. Let 𝑉 be an arbitrary 𝜏-neighborhood 
of zero. There exists a 𝑌 ∈ 𝑁𝑛𝑜𝑟 such that 𝑌 ⊆ 𝑉. 
Choose 𝑊 ∈ 𝑁𝑛𝑜𝑟 such that 𝑊 + 𝑊 + 𝑊 ⊆ 𝑌. Since 
(𝑓𝑘) converges to 𝑓, there exists a positive integer 𝑛1 
such that for all 𝑥 ∈ 𝐸 and for all 𝑛 ≥ 𝑛1, 𝑓(𝑥) −
𝑓𝑛(𝑥) ∈ 𝑊. Also since 𝑓𝑛1

 is slowly oscillating 

continuous, there exists an integer 𝑛2 = 𝑛2 > 𝑛1 and 
𝛿 = 𝛿(𝑉) > 0 such that  
 
𝑓𝑛1

(𝑥𝑘) − 𝑓𝑛1
(𝑥𝑛) ∈ 𝑊  

 
whenever 𝑛 ≥ 𝑛2 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. Hence, for 
all 𝑛 ≥ 𝑛1 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛 we have 
  
𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) = 𝑓(𝑥𝑘) − 𝑓𝑛1

(𝑥𝑘) + 𝑓𝑛1
(𝑥𝑘) − 𝑓𝑛1

(𝑥𝑛) +

𝑓𝑛1
(𝑥𝑛) − 𝑓(𝑥𝑛) ∈ 𝑊 + 𝑊 + 𝑊 ⊆ 𝑌 ⊆ 𝑉.  

 
Thus it implies that 𝑓(𝑥𝑘) − 𝑓(𝑥𝑛) ∈ 𝑉 for all 𝑛 ≥

𝑛1 and 𝑛 ≤ 𝑘 ≤ (1 + 𝛿)𝑛. Thus 𝑓 is slowly oscillating 
continuous function on 𝐸 and this completes the 
proof of theorem.  

Corollary 3.12: The set of all slowly oscillating 
continuous functions defined on a subset 𝐸 of 𝑋 is a 
complete subspace of the space of all continuous 
functions on 𝐸.  

Next we define the concept of slowly oscillating 
compactness in LNRS. 

Definition 3.13: A subset 𝐸 of 𝑋 is called slowly 
oscillating compact if any sequence of points in 𝐸 has 
a slowly oscillating subsequence.  

We see that any compact subset of 𝑋 is slowly 
oscilatting compact, union of two slowly oscillating 
compact subsets of 𝑋 is slowly oscillating compact. 
Any subset of slowly oscillating compact set is also 
slowly oscillating compact and so intersection of any 
slowly oscillating compact subsets of 𝑋 is slowly 
oscillating compact. 

Theorem 3.14: A slowly oscillating continuous image 
of a slowly oscillating compact subset of 𝑋 is slowly 
oscillating compact.  

Proof. Let 𝑓 be a slowly oscillating continuous 
function on 𝑋 and 𝐸 be a slowly oscillating compact 
subset of 𝑋. Let 𝐲 = (𝑦𝑛) be a sequence of points in 
𝑓(𝐸). Then we can write 𝑦𝑛 = 𝑓(𝑥𝑛) where (𝑥𝑛) is 
sequence of points in 𝐸 for each 𝑛 ∈ ℕ. Since 𝐸 is 
slowly oscillating compact, there is a slowly 
oscillating subsequence 𝐳 = (𝑧𝑘) = (𝑥𝑛𝑘

) of (𝑥𝑛). 

Then, slowly oscillating continuity of 𝑓 implies that 
𝑓(𝑧𝑘) is a slowly oscillating subsequence of 𝑓(𝑥𝑛). 
Hence 𝑓(𝐸) is slowly oscillating compact.  

We say that a subset 𝐸 of 𝑋 is called Cauchy 
compact if any sequence of points of 𝐸 has a Cauchy 
subsequence. We see that any Cauchy compact 
subset of 𝑋 is also slowly oscillating compact and 
slowly oscillating continuous image of any Cauchy 
compact subset of 𝑋 is Cauchy compact. 

Corollary 3.15: For any regular subsequential 
method 𝐺, if 𝐸 is 𝐺-sequentially compact subset of 𝑋, 
then it is slowly oscillating compact.  

Proof. The proof of the result follows from the 
regularity and subsequence property of 𝐺.  

Theorem 3.16: Let 𝐸 be a slowly oscillating compact 
subset of 𝑋 and let 𝑓: 𝐸 → 𝑋 be a slowly oscillating 
continuous function. Then 𝑓 is uniformly continuous 
on 𝐸.  

Proof. Suppose that 𝑓 is not uniformly continuous on 
𝐸. Let 𝑉 be an arbitrary 𝜏-neighborhood of zero. 
There exists a 𝑌 ∈ 𝑁𝑛𝑜𝑟  such that 𝑌 ⊆ 𝑉. Choose 𝑊 ∈
𝑁𝑛𝑜𝑟  such that 𝑊 + 𝑊 + 𝑊 ⊆ 𝑌. Let (𝑥𝑛) and (𝑦𝑛) be 
sequences of points in 𝐸. Let 𝑚 be a positive integer 
such that 𝑥𝑛 − 𝑦𝑛 ∈ 𝑊 for all 𝑛 ≥ 𝑚, but: 

  
𝑓(𝑥𝑛) − 𝑓(𝑦𝑛) ∉ 𝑉 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑚.                                   (3.1) 

 
Since 𝐸 is slowly oscillating compact, there is a 

slowly oscillating subsequence (𝑥𝑛𝑘
) of (𝑥𝑛). It is 

clear from the result  
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𝑦𝑛𝑘
− 𝑦𝑛𝑚

= 𝑦𝑛𝑘
− 𝑥𝑛𝑘

+ 𝑥𝑛𝑘
− 𝑥𝑛𝑚

+ 𝑥𝑛𝑚
− 𝑦𝑛𝑚

∈ 𝑊 +

𝑊 + 𝑊 ⊆ 𝑌  
 
that the corresponding subsequence (𝑦𝑛𝑘

) of (𝑦𝑛) is 

also slowly oscillating. Then from the result (3.1) we 
observe that the sequences (𝑓(𝑥𝑛𝑘

)) and (𝑓(𝑦𝑛𝑘
)) 

are not slowly oscillating. This contradiction 
completes the proof of the theorem.  

Corollary 3.17: Let 𝐸 be a slowly oscillating compact 
subset of 𝑋 and let 𝑓: 𝐸 → 𝑋 be a slowly oscillating 
continuous function. Then 𝑓 is uniformly continuous if 
and only if it is slowly oscillating continuous.  

Corollary 3.18: A real valued function defined on a 
bounded subset of ℝ is uniformly continuous if and 
only if it is slowly oscillating continuous.  

Proof. The proof of the result follows from the fact 
that totally boundedness coincides with slowly 
oscillating compactness and boundedness coincides 
with totally boundedness in ℝ.  

Kostyrko et al. (2000) introduced the notion of 
ideal convergence which is a generalization of 
statistical convergence (Fast, 1951; Fridy, 1985) 
based on the structure of the admissible ideal 𝐼 of 
subsets of natural numbers ℕ. 

A family of sets 𝐼 ⊂ 𝑃(ℕ) (the power sets of ℕ) is 
said to be an ideal on ℕ if and only if 𝜙 ∈ 𝐼 for each 
𝐴, 𝐵 ∈ 𝐼, we have 𝐴 ∪ 𝐵 ∈ 𝐼 for each 𝐴 ∈ 𝐼 and each 
𝐵 ⊂ 𝐴, we have 𝐵 ∈ 𝐼. A non-empty family of sets 
𝐹 ⊂ 𝑃(ℕ) is said to be a filter on ℕ if and only if 𝜙 ∉
𝐹 for each 𝐴, 𝐵 ∈ 𝐹, we have 𝐴 ∩ 𝐵 ∈ 𝐹 each 𝐴 ∈ 𝐹 
and each 𝐵 ⊃ 𝐴, we have 𝐵 ∈ 𝐹. An ideal 𝐼 is called 
non-trivial ideal if 𝐼 ≠ 𝜙 and ℕ ∉ 𝐼. Clearly 𝐼 ⊂ 𝑃(ℕ) 
is a non-trivial ideal if and only if 𝐹 = 𝐹(𝐼) = {ℕ −
𝐴: 𝐴 ∈ 𝐼} is a filter on ℕ. A non-trivial ideal 𝐼 ⊂ 𝑃(ℕ) 
is called admissible if and only if {{𝑛}: 𝑛 ∈ ℕ} ⊂ 𝐼. 
Throughout we assume 𝐼 is a non-trivial admissible 
ideal in ℕ. 

A sequence x = (𝑥𝑛) of points in a locally normal 
Riesz space 𝑋 is said to be ideally convergent to 𝑥0 ∈
𝑋 if for every 𝜏-neighborhood 𝑉 of zero, the set {𝑛 ∈

ℕ: 𝑥𝑛 − 𝑥0 ∉ 𝑉} ∈ 𝐼. In this case we write 𝑥𝑛 →
𝐼𝜏

ℓ i.e. 
𝐼𝜏-lim𝑥𝑛 = ℓ (for details see Hazarika (2014a) ). 

Definition 3.19: Let (𝑋, 𝜏1) and (𝑌, 𝜏2) be LNR spaces 
and 𝐸 ⊂ 𝑋. A function 𝑓: 𝐸 → 𝑌 is called ideally 

continuous at a point 𝑥0 ∈ 𝐸 if 𝑥𝑛 →
𝐼𝜏1

𝑥0 in 𝐸 implies 

 𝑓(𝑥𝑛) →
𝐼𝜏2

𝑓(𝑥0) in 𝑌.  
 
An element 𝑥0 in 𝑋 is called an ideal limit point of 

a subset 𝐸 of 𝑋 if there is an 𝐸-valued sequence of 
points with ideal limit 𝑥0. It follows that the set of all 
ideal limit points of 𝐸 is equal to the set of all limit 
points of 𝐸 in the ordinary sense. An element 𝑥0 in 𝑋 
is called an ideal accumulation point of a subset 𝐸 if 
it is an ideal limit point of the set 𝐸 − {𝑥0}. The set of 
all ideal accumulation points of 𝐸 is equal to the set 
of all accumulation points of 𝐸 in the ordinary sense. 

A function 𝑓 on 𝑋 is said to have an ideally 
sequential limit at a point 𝑥0 of 𝑋 if the image 
sequence (𝑓(𝑥𝑛)) is ideally convergent to x0 for any 
ideally convergent sequence x = (xn) with ideal limit 
x0 and a function f is to be ideally sequentially 
continuous at a point x0 of X if the sequence (f(xn)) 
is ideally convergent to f(x0) for any ideally 
convergent sequence x = (xn) with ideal limit 𝑥0 (for 
details see Cakalli and Hazarika (2012) ). 

Lemma 3.20: A function 𝑓 on 𝑋 has an ideally 
sequential limit at a point 𝑥0 of 𝑋 if and only if it has 
an ideal limit at a point 𝑥0 of 𝑋 in ordinary sense.  

Proof. The proof follows from the fact that any 
ideally convergent sequence has a convergent 
subsequence (also see Cakalli and Hazarika (2012) ).  

Theorem 3.21: A function 𝑓 on 𝑋 is ideally 
sequentially continuous at a point 𝑥0 of 𝑋 if and only if 
it is continuous at a point 𝑥0 in ordinary sense.  

Proof. The proof follows from the fact that any 
ideally convergent sequence has a convergent 
subsequence and from the above lemma.  

Theorem 3.22: If a function is slowly oscillating 
continuous on a subset 𝐸 of 𝑋, then it is ideally 
sequentially continuous on 𝐸.  
Proof. Let 𝑓 be any slowly oscillating continuous on 
𝐸. By Theorem 3.3, we have 𝑓 is continuous on 𝐸. 
Also from Theorem 3.21, we see that 𝑓 is ideally 
sequentially continuous on 𝐸. This completes the 
proof.  

Theorem 3.23: If a function is 𝛿-ward continuous on 
a subset 𝐸 of 𝑋, then it is ideally sequentially 
continuous on 𝐸.  

Proof. Let 𝑓 be any 𝛿-ward continuous function on 
𝐸. It follows from Corollary 2 in Cakalli (2011d) that 
𝑓 is continuous. By Theorem 3.21 we obtain that 𝑓 is 
ideally sequentially continuous on 𝐸. This completes 
the proof of the theorem. 

4. Conclusions 

In this paper, the concept of slowly oscillating 
continuity and slowly oscillating compactness in 
locally normal Riesz spaces are introduced and 
investigated. In this investigation we have obtained 
theorems related to slowly oscillating continuity, 
slowly oscillating compactness, sequential continuity 
and uniform continuity. Finally, we note that the 
results of this paper can be obtained by defining the 
ideas of quasi-slowly oscillating and Δ-quasi-slowly 
oscillating sequences of fuzzy points (for fuzzy 
setting, we refer to Cakalli and Das (2009), Hazarika 
(2014c, 2013a, 2013b), and Hazarika and Savas, 
2011) ). 
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